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Algorithms for constructing aperiodic structures produce templates for the

nanofabrication of arrays for applications in photonics, phononics and

plasmonics. Here a general multidimensional recursion rule is presented for

the regular paperfolding structure by straightforward generalization of the one-

dimensional rule. As an illustrative example the two-dimensional version of the

paperfolding structure is explicitly constructed, its symbolic complexity referred

to rectangles computed and its Fourier transform shown. The paperfolding

structures readily yield novel ‘paperfolding’ tilings. Explicit formulas are put

forward to count the number of folds in any dimension. Finally, possible

generalizations of the dragon curve are discussed.

1. Introduction

The purpose of this paper is to present a simple, clear, trans-

parent algorithm for creating an unprecedented two- or

three-dimensional structure as a template for its physical

realization as well as the necessary basic information about it.

It is written by physicists and intended for nanoscientists,

crystallographers, electron microscopists and condensed

matter physicists in general. Dimensions beyond three are

simply a concomitant bonus. Nevertheless, we would be

pleased if expert mathematicians and computer science

theorists should meet the challenge and elaborate the subject

in a rigorous formal manner.

To the best of our knowledge, the paperfolding (PF)

sequence and the closely related dragon curve were first

invented (or discovered?), at least in the West, by three

physicists: John E. Heighway, Bruce A. Banks and William G.

Harter. The sequence and the curve were publicized in 1967 by

the great Martin Gardner in his legendary column ‘Mathe-

matical Games’, which quite often spawned serious and

important research (Gardner, 1967a,b,c). Somewhat later

Chandler Davis and Donald Knuth thoroughly elaborated the

subject (Davis & Knuth, 1970a,b).

Since then the regular paperfolding (RPF) sequence has

become one of the standard, if not to say paradigmatic,

aperiodic systems. A comprehensive and readable account was

published in the Mathematical Intelligencer (Dekking et al.,

1982a,b,c). Newer references are the seminal book by

Allouche & Shallit (2003) and a recent paper by Dekking

(2012).

Almost all of the literature about paperfolding sequences is

limited to one dimension. A notable exception is ‘Quelles

tuiles!’ by Salon (1989), a most interesting and important

paper. Most regrettably it went largely unnoticed. After we

submitted this paper one of the referees drew our attention to

it. Salon discovered that the edges of the Robinson tiling

(Robinson, 1971; Grünbaum & Shephard, 1986) form a two-

dimensional paperfolding structure. He then found that the

structure can be physically realized by folding a handkerchief.

We went the other way. We started by folding a sheet of paper

first from left to right and then from bottom to top and looked

for an algorithm that reproduces the result.

For physical applications it is interesting to construct

multidimensional analogues of the PF sequence. Two-

and three-dimensional versions of aperiodic sequences

serve as templates to fabricate photonic, phononic and

plasmonic structures, such as virtually isotropic bandpass

filters and particularly patterns for ‘light in tiny holes’

(EOT – extraordinary optical transmission of light through

patterned arrays of subwavelength orifices) (cf. Genet &

Ebbesen, 2007). Recently we have constructed a two-

dimensional paperfolding (2D PF) structure and computed its

line complexity using a simplified version (Ben-Abraham &

Quandt, 2011) of a recursive algorithm suggested by Barbé &

von Haeseler (2004, 2005, 2007). It turned out that the

algorithm causes the structure to be extremely fractal,

consisting of widely scattered islands, which is useless for

applications and rather inconvenient for presentation. In Fig. 1

we show the ninth generation of the recursion. With some

serious numerical effort we were actually able to generate

structures which correspond to up to 13 recursions. But the

final patterns are so scattered that one can hardly see

anything. This was a strong motivation for us to find an

alternative approach based on actual paper folding. We

eventually succeeded in deriving a straightforward general-

ization of the one-dimensional recursion rule.
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2. Preliminary observations

The RPF sequence is usually defined as follows. Let A2 = {a; b}

be the alphabet of symbols, S(n) the chain after n iterations

and m0 the operator of reversing a word and interchanging the

symbols. The notation m0 is taken from crystallography where

it signifies a mirror with colour interchange. In the present

case it reverses the string and interchanges the symbols. That

operation will be useful in what follows. Using the conventions

mentioned above the recursion rule becomes

Sðnþ 1Þ ¼ SðnÞ a m0SðnÞ;

Sð1Þ ¼ a: ð1Þ

The first three generations thus become

a

aab

aabaabb

ð2Þ

The conventional PF sequences are considered as one sided

and defined on the natural numbers N. The leftmost entry is

always the image of the number 1. In Ben-Abraham & Quandt

(2011) we constructed a double-sided version defined on the

set of all integers Z by concatenating to the left the sequence’s

antipalindrome. One of the referees pointed out that the PF

sequence is by itself already double sided. That is true

provided that the pivot a is invariably fixed on zero and thus

the left half-chain sits on the negative integers.

In ‘reality’ one folds a (quasi) two-dimensional sheet of

paper, and in contrast to conventional paper folding as a

tangible realization of the sequences, which are one dimen-

sional, the folds are zero-dimensional points. Yet another,

transversal, dimension is necessary to perform the folding, to

wit, the perpendicular to the sheet of paper. It leaves its trace

as the sign of the entries, ‘valley’ (a or +) or ‘crest’ (b or �). It

reappears and fully manifests itself after unfolding to produce

a dragon curve.

In a natural way, most people are inclined to fold from right

to left resulting in the recursion (1). However, it turns out that

this is somewhat inconvenient for generalizations. Therefore

we shall change the convention such that at step (n + 1) of the

iteration the nth patch S(n) will always be in the all + sector

and the ‘pivot’ S(1) = a (or the centre of its analogue) will

always be at the origin.

3. The recursion

Bearing in mind RPF structures in arbitrary dimensions, let

us suggest some conventions. Referring to Cartesian axes xk

(k = 1, . . . , d) we always fold from the negative to the positive

half axis and cycle from 1 to d. Thus, for instance, in three

dimensions the folding cycle becomes

left ! right; bottom ! top; back ! front: ð3Þ

Without losing generality we shall use the alphabet

A2 ¼ fþ;�g (+ for ‘valley’, � for ‘crest’). Thus, in one

dimension we define the RPF sequence by the recursion rule

Sðnþ 1Þ ¼ m0SðnÞ þ SðnÞ;

Sð0Þ ¼ ;: ð4Þ

Here ; denotes the empty chain.

In two dimensions the recursion rule becomes

þ

m01SðnÞ ..
.
SðnÞ

þ

Sðnþ 1Þ ¼ � � � � � � � � � þ þ � � � þ

þ

m02m01SðnÞ ..
.
m02SðnÞ

þ ð5Þ

Here m0k denotes a mirror perpendicular to the axis k with

colour change; in other words, reversing the string and inter-

changing the symbols. The first left-to-right fold, i.e. the

vertical one, consists of a valley only, denoted here by +. The

following bottom-to-top fold has all valleys (+) at its right half

and all crests (�) at its left half.

In two dimensions the following identities are valid:

m02m01 � m2m1 � 2 � 1; ð6Þ

that is, the two colour mirrors result in a rotation by 180�,

which in two dimensions is the same as inversion. In higher

dimensions additional specifications are necessary.

In two dimensions, the folds are straight line segments. In

the more general case of d dimensions, they are (d � 1)-

dimensional facets.

Henceforth, the seed or fundamental motif S(1) in any

dimension d will be called the ‘pivot’. In one dimension it is

simply a point dividing the line into two half-lines, in two

dimensions a cross, i.e. the inner edges of the four square cells

around the origin, in three dimensions the inner faces of the
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Figure 1
Ninth generation of two-dimensional PF constructed by the simplified
Barbé–von Haeseler recursion.



eight cubic cells around the origin, and analogously in higher

dimensions.

It is advantageous to switch from the two-letter alphabet

A2 ¼ fþ;�g to the four-letter alphabet A4 ¼ {| | — — }. This

allows one to distinguish between horizontal and vertical folds.

Moreover, it immediately generalizes to any dimension. Thus

there are always two variants of the structure: a full (or

coloured) variant with 2d (colour) symbols and a reduced (or

‘black-and-white’) variant with only two symbols + and �. Fig.

5 shows the fourth generation of the reduced variant. This

should be compared with Fig. 3 which shows the corre-

sponding full variant.

For convenience we use the following colour code. The

‘valleys’ perpendicular to the horizontal x axis are coloured by

the shortest wavelength, say violet in three dimensions, those

perpendicular to y by blue and those perpendicular to z by

green. The ‘crests’ get the complementary colours: yellow,

orange and red, respectively. And of course, analogically in

any dimension.

Fig. 2 shows the three first generations of the two-

dimensional RPF structure. Figs. 3 and 4 show the fourth and

sixth generations, respectively. By now we have proceeded up

to the ninth generation and we still continue, mainly in order

to further investigate the rectangle complexity. However, to

show a printed picture, more recursions might be more

confusing than illuminating.

As an illustration of ‘paperfolding’ in higher dimensions,

Fig. 6 shows the first and second generation of the three-

dimensional PF structure. Detailed elaboration of the three-

dimensional and four-dimensional structures is in progress.

4. ‘Paperfolding’ tilings

PF structures can be readily turned into tilings (PFTs). That

holds for general PF structures, that is, not necessarily regular

ones.

Acta Cryst. (2013). A69, 123–130 Shelomo I. Ben-Abraham et al. � Multidimensional paperfolding systems 125

research papers

Figure 2
The first three generations of two-dimensional RPF constructed by
recursion.

Figure 4
The sixth generation of two-dimensional RPF constructed by recursion.

Figure 5
Reduced variant of fourth generation of two-dimensional RPF, to be
compared with Fig. 3.

Figure 3
The fourth generation of two-dimensional RPF constructed by recursion.



To turn a PF into a PFT all that is needed is to put points at

the cell centres and connect them to the cell vertices. This

creates cross polytopes with the folds as their equatorial

(hyper-)planes. The vertices and the centres of the cell will be

the vertices of the tilings. Thus, for instance, in one dimension

we get line segments centred on the fold points, in two

dimensions we get squares at 45� to the cells with the folds as

one of their diagonals.

The one-dimensional case is quite trivial, but in two and

higher dimensions the tilings become interesting. Fig. 7 shows

the third generation of the two-dimensional tiling. For clarity

we do not show higher generations.

By displacing the vertices of the tiling within the cells we

can create tilings with tiles different from regular cross-

polytopes. When the displacements are the same in all cells we

simply change the tiles into identical deformed polytopes.

However, we may displace the tiling vertices differently in

different cells. That may be done by some deterministic rule

but at random as well. We may even change the polytopes’

edges into curved segments. Topologically all that does not

change anything but geometrically we get an uncountable

infinity of tiling variants. Fig. 8 shows such an arbitrarily

deformed tiling. Fig. 9 shows a ‘fish and mussels’ tiling à la

Maurice Escher.

5. Complexity matrix

To start with, a few preliminary definitions are in order, for

the benefit of the general readership. Symbolic complexity

pS(w|N) is the number of different words (configurations) w of

size N in a given structure S. Line complexity pS(w|n) is

symbolic complexity referred to a one-dimensional subset of a

structure. For instance, if the structure is supported by a two-

dimensional square lattice it is the complexity of rows and

columns, and it is then called row complexity and column

research papers
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Figure 6
The first and second generations of the three-dimensional PF structure.

Figure 8
The third generation of a two-dimensional deformed ‘paperfolding’ tiling.

Figure 9
The third generation of a two-dimensional ‘paperfolding’ tiling à la
Escher.

Figure 7
The third generation of the two-dimensional ‘paperfolding’ tiling.



complexity, respectively. Rectangle complexity pS(w|m � n) is

the symbolic complexity of a structure supported by a two-

dimensional square lattice considering rectangles of size

N = m � n as the relevant configurations.

For the one-dimensional PF sequences the symbolic

complexity is known to be pPF nð Þ ¼ 4n for all n � 7 (Allouche,

1992). Alas, for higher dimensions there are no known

formulas. The most that is known is that asymptotically the

complexity behaves like Nd (Julien, 2009, 2010).

As can be seen from Table 1 and Fig. 10, the rectangle

complexity p(N) referred to the area N = m � n of the m � n

rectangles oscillates wildly. These oscillations are a misleading

artefact due to the factorization of N. For instance, p(N)

always sharply drops when N is a prime number. Therefore,

rather than presenting p(N) as a one-dimensional sequence,

we shall present p(m, n) as an infinite matrix (Table 2). Then

the line entries (rows and columns) increase monotonically.

However, since the computation is limited to some maximal N,

only the upper left corner of p(m, n) will be occupied.

Analogously, in a higher dimension d the complexity becomes

a d-dimensional array p(m1, . . . , md).

We computed the rectangle complexity up to N = 30, but we

present only those results whose convergence was checked

through three consecutive generations.

6. The count

It is interesting to determine how many folds there are in a

given generation S(n) of the structure. We denote this number

by |S(n)|.
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Table 1
Rectangle complexity p(N) related to A4.

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14
p 4 16 32 88 84 320 176 548 468 844 410 1656 542 1396

N 15 16 17 18 19 20 21 22 23 24 25 26 27 28
p 1396 2020 808 2904 984 3300 2244 2700 1320 5500 1200 2476 2196 4044

Table 2
Complexity matrix p(m, n) related to A4.

m n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 4 8 16 24 36 48 64 76 96 116 136 156 184 212 252 288 324 624 360 396 432 468 504 540
2 8 32 112 192 304 408 512 608 736 864
3 16 80 192 288 408 540
4 32 136 256 368 512
5 48 192 316 440 608
6 80 232 368 504
7 112 272 420 564
8 144 312 472
9 180 360 540
10 232 416
11 274 472
12 316 528
13 358 584
14 400 620
15 440
16 480
17 520
18 576
19 624
20 672
21 720
22 768
23 816
24 864

Figure 10
Rectangle complexity p(N) related to A4.



In d dimensions the number of sectors (half-axes, quadrants,

octants, n-ants) is

# ðsectorsÞ ¼ # ðvertices of d-cubeÞ

¼ # ðfacets of d-crossÞ ¼ 2d: ð7Þ

The number of folds in the ‘pivot’, that is, all mirrors, is

# ðpivotÞ ¼ # ðmirrorsÞ � # ðfolds in mirrorÞ

¼ 2d�1
� 2ðd�1Þnd; ð8Þ

where

# ðmirrorsÞ ¼ 1
2 # ðsectorsÞ
� �

� 1
2 # ðfaces of d-cubeÞ
� �

¼ 2d
� 2d=4 ¼ 2ðd�1Þd ð9Þ

and

# ðfolds in mirrorÞ ¼ 2ðd�1Þn: ð10Þ

The latter follows from equation (7) by the following

geometrical reasoning. Consider a coordinate axis and the

(d �1)-dimensional plane perpendicular to it through the

origin. That plane contains some of the facets of the sectors

located around the origin, i.e. some of the mirrors needed to

generate the PF structure in d dimensions. Furthermore, the

plane cuts the sectors in two equal pieces and therefore the

number of facets in that plane will be 2d=2 ¼ 2d�1.

Again, by construction, those facets will act as mirrors in

our generalization of the PF sequence in d dimensions.

Application of our general prescription to generate a PF

structure in d dimensions will then transport all the mirrors of

this first generation into the starting sector, where they are

subject to the various mirror operations described above. If we

now look at the necessary pivot(s) along the plane perpendi-

cular to the chosen coordinate axis, we realize that the number

of mirrors must grow by a factor of 2d�1 to match the size of

the various new motifs generated by the mirror operations.

The same reasoning applies to all the other mirrors

perpendicular to the various coordinate axes, and after n

applications of the basic recursion step in d dimensions, the

size of a new generation of mirrors substituting each mirror of

a previous generation is given exactly by equation (10).

Therefore the generalization of the PF sequence in d

dimensions leads to the following recursion formula:

Sðnþ 1Þ
�� �� ¼ # ðsectorsÞ SðnÞ

�� ��þ # ðpivotÞ

¼ 2d SðnÞ
�� ��þ 2d�1 � 2ðd�1Þnd

¼ 2d SðnÞ
�� ��þ 2ðd�1Þðnþ1Þd;

Sð0Þ
�� �� ¼ 0: ð11Þ

This also yields a closed formula for any dimension d and

generation n:

SðnÞ
�� �� ¼ 2ðd�1Þnð2n � 1Þd;

d; n 2 N0:
ð12Þ

The proof is by straightforward induction.

Specifically we have

1D : SðnÞ
�� �� ¼ 1� 20n ð2n � 1Þ ¼ ð2n � 1Þ;

2D : SðnÞ
�� �� ¼ 2� 21n

ð2n
� 1Þ ¼ 2nþ1

ð2n
� 1Þ;

3D : SðnÞ
�� �� ¼ 3� 22n ð2n � 1Þ;

4D : SðnÞ
�� �� ¼ 4� 23n

ð2n
� 1Þ ¼ 23nþ2

ð2n
� 1Þ;

n 2 N0: ð13Þ

As can be seen, the count |S(n)| grows exponentially. In three

and higher dimensions it rapidly becomes staggering.

7. Fourier transform

It is known that the one-dimensional RPF sequence is almost

periodic (i.e. limit quasi-periodic). Hence, its Fourier trans-

form is of the pure point kind. Since our recursion rule is a

straightforward generalization of the one-dimensional rule,

the almost-periodic nature of the sequence and its corollary,

the pure point Fourier spectrum, must hold also in arbitrary

dimension. As an illustration of this fact we show in Fig. 11 an

image of the Fourier transform of the sixth generation of the

two-dimensional RPF.

8. Is there a dragon surface?

It is well known that unfolding a one-dimensional PF sequence

produces a plane-filling dragon curve. Fig. 12 shows the fourth

generation of the dragon curve, that is, its segment produced

by unfolding a four times folded sheet of paper. It is natural

to ask whether this generalizes to higher dimensions, that

is, whether there is a dragon (hyper-)surface. Unfortunately,

the straightforward simple answer is negative. However, the

situation is more subtle and interesting.

Let us recall that the folds in any dimension are labelled by

the coordinate axis perpendicular to them.

Consider a two-dimensional RPF structure. Cut it up into

strips along the horizontal (alias 2 or y) folds. Each strip

contains a one-dimensional PF sequence of vertical (alias 1 or

x) folds. Thus, upon unfolding it will produce a dragon strip.

The trouble is that adjacent strips do not match up. Starting at

adjacent folds the strips diverge; this is shown in Fig. 13. Upon

completion the dragon strip eventually forms a square

honeycomb. Its walls are square facets parallel to the 12 (xy)
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Figure 11
Fourier transform of the sixth generation of two-dimensional RPF.



and 23 (yz) planes. It is open in the 2 (y) direction; in other

words the facets parallel to the 31 (zx) plane are missing as

shown in Fig. 13. Alternatively, one may view the square

honeycomb as a cylinder segment with the dragon curve as its

directrix and the vertical segment as its generatrix.

The union of all square honeycombs may be considered to

be the space-filling dragon surface. Here one may take one of

two viewpoints. One may ignore the misfits of adjacent dragon

strips and simply match up the complete honeycombs. It is,

however, preferable to consider the dragon curves with

rounded corners and accept that the resulting dragon surface

is discontinuous.

The preceding consideration must be repeated with vertical

strips, that is interchanging 1$ 2 (x$ y). That leads to the

conclusion that the two honeycombs are intertwined; thus the

resulting dragon surface eventually cuts up three dimensions

into an infinite ‘crystalline’ array of cubic cells while the 12

(xy) facets are covered twice, as shown in Fig. 14.

In general, for a d-dimensional PF structure the dragon

hypersurface will cut up the (d + 1)-dimensional embedding

space into an infinite ‘crystalline’ array of hypercubic cells

with multiple covering of a subset of facets.

9. Conclusion and outlook

We have generalized the recursion rule for the one-

dimensional RPF sequence to arbitrary dimension. As an

illustrative example we have explicitly constructed the two-

dimensional version of the RPF structure. We have computed

its rectangle complexity, that is, the symbolic complexity

referred to rectangles. We have shown that the PF structures

readily yield interesting novel ‘paperfolding’ tilings. We have

also discussed possible generalizations of the dragon curve

and the difficulties thereof.

There remain quite a few challenges:

(i) To find and prove an analytic formula for the rectangle

complexity, or, at least, for the line complexity of the two-

dimensional RPF.

(ii) An even harder task would be to find a formula valid for

higher dimensions.

(iii) Compute the symbolic complexity referred to lattice

animals (polyominoes) and find the respective formula.

(iv) Construct multidimensional generalized (i.e. not

regular) PF structures and compute their complexities.
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